servicios de publicación
sin costo

Teoremas de Poincaré-Dulac para Campos Holomorfos n-Dimensionales

Teoremas de Poincaré-Dulac para Campos Holomorfos n-Dimensionales

Dominios de Poincaré y Siegel en el Espacio Complejo n-dimensional

Editorial Academica Espanola ( 04.01.2016 )

€ 49,90

Comprar en MoreBooks!

En este libro hacemos un estudio de la extensión de los Teoremas de Poincaré y Dulac sobre los campos holomorfos n-dimensiones con parte lineal no nula. El Teorema de Linealización de Poincaré consiste en que si el campo holomorfo n-dimensional posee autovalores no resonantes, el campo será localmente equivalente a su parte lineal. Mientras que el Teorema de Dulac son para campos holomorfos con autovalores resonantes y nos dice estos campos son locamente equivalente a un campo polinomial. Para llegar a estos resultados, en el libro se presenta los preliminares pertinentes de tal forma que este libro sea autocontenido. También mostramos como un paso previo al resultado final, los teoremas conocidos de Poincaré-Dulac para campos holomorfos bidemendinales. Finalmente para llegar al resultado se utiliza conocimientos de series de potencias formales y convergentes en el espacio complejo n-dimensional. Esto nos permite saber de cómo ajustar una serie formal para que ésta se convierta en una serie convergente. Teniendo así finalmente una conjugación biholomorfa que hará la equivalencia esperada en los teoremas esperados.

Detalles de libro:

ISBN-13:

978-3-639-73213-9

ISBN-10:

3639732138

EAN:

9783639732139

Idioma del libro:

Español

Por (autor):

Luis Javier Vásquez Serpa
Liliana Olga Jurado Cerrón

Número de páginas:

88

Publicado en:

04.01.2016

Categoría:

Matemáticas